

Efficiently exposing apps
on Kubernetes at scale

Rasheed Amir, Stakater

Problem Kubernetes runs container workloads in
Pods
... but these are not automatically
accessible outside the cluster
❖ What options does Kubernetes

provide for this?
❖ How do we utilize these options

efficiently?
➢ across multiple apps (e.g. for

micro-frontends)
➢ across redeployments (e.g. for

continuous deployment)

Agenda

We will explore...

The basics of how to expose an
app on Kubernetes

Some useful best practices for
these tools and processes

How to use automation to scale
the process for multiple apps

About me

About
Stakater

Based in Stockholm

https://github.com/stakater

Kubernetes Expert! Team of professionals
experienced with DevOps Automation and
Full-stack web application development

We provide professional tools and services to help
customers create and manage their Kubernetes
based infrastructure effortlessly

Some of our clients:

https://github.com/stakater

Service

What is a Kubernetes Service?

❖ An abstraction which provides access to a logical set of Pods
❖ Pods come and go, but Service has a stable IP address
❖ Provides load balancing (primitive) across member pods
❖ Which pods?

➢ Determined by label selector
❖ How to access?

➢ Determined by service type

Service Type: ClusterIP

ClusterIP

❖ Default service type
❖ Service is accessible on a cluster internal IP
❖ Apps inside the cluster can access the service

ClusterIP

But...

❖ No access from outside the cluster

Service Type: NodePort

NodePort

❖ exposes the service on a static port on each node

NodePort

But...

❖ can only have one service per port
❖ a limited number of usable ports
❖ Needs special handling for cases of change in Node/VM IP

Service Type: LoadBalancer

LoadBalancer

❖ exposes the app using a cloud provider’s network load
balancer

❖ The load balancer gets a single IP

LoadBalancer

But...

❖ all traffic on the port will be forwarded to the service. no
filtering or routing.

❖ each service exposed is handled by a separate Load Balancer.
➢ Skyrocketing cost in a large scale application.

Ingress

Ingress

❖ More efficient way of exposing services
❖ Route traffic based on the request host or path
❖ Centralization of many services to a single point
❖ Use ClusterIP Service type

Ingress Controller

❖ Required by Ingress to work
❖ looks up Ingress resource definitions and routes traffic to

services accordingly
❖ match with Ingress based on Class name

nginx ingress controller
❖ automatically creates a Load Balancer, e.g. ELB for AWS
❖ SSL termination
❖ Load balancing

Best
practice

❖ 2 ingress controllers and 2 load
balancers
➢ one for public applications
➢ second for private applications

❖ private applications and load
balancer should have restricted
access
➢ security groups, IP whitelisting, etc.

Ingress
Controller

Checkpoint

Create Ingress
Create Service

Let's
Reflect

Manually creating ingress resource for
each application…

…is too much manual work

How do we do it efficiently for all
applications?

Let's Automate!

Stakater Xposer

https://github.com/stakater/Xposer

https://github.com/stakater/Xposer

Stakater Xposer

❖ Automatically creates/updates/deletes an ingress for a
service with config from annotations

❖ Optionally uses CertManager to automatically generate TLS
certificates

apiVersion: v1
kind: Service
Metadata:
 name: myapp
 labels:
 expose: 'true'
 annotations:
 config.xposer.stakater.com/IngressNameTemplate: 'myapp-ingress'
 config.xposer.stakater.com/IngressURLTemplate: 'myapp.stakater.com'
 xposer.stakater.com/annotations: |-
 kubernetes.io/ingress.class: external-ingress

apiVersion: extensions/v1beta1
kind: Ingress
 metadata:
 name: myapp-ingress
 annotations:
 kubernetes.io/ingress.class: external-ingress
 spec:
 rules:
 - host: myapp.stakater.com,
 http:
 paths:
 - path: /
 backend:
 serviceName: myapp
 servicePort: 80
...

Next step
The load balancer will have an auto-generated
unfriendly domain name.

DNS!

We would like to use our custom domain name.

What do we do?

b8d03a52e6b8611e98c4d02a061b92d1-1200162703.us-west-2.elb.amazonaws.com

Domain Name
Systems (DNS)

What is DNS

❖ The phonebook of the Internet
❖ translates domain names e.g. aws.amazon.com to IP

addresses so browsers can load Internet resources
❖ DNS Servers hold these records

http://aws.amazon.com

AWS Route53

What is Route53

❖ Amazon's Domain Name System (DNS)
web service

❖ Main functions
➢ domain registration
➢ DNS routing
➢ health checking

Create Hosted Zone

Create Record Set
myapp

Let's
Reflect

Manually creating DNS records for each
service…

…is too much manual work

How do we do it efficiently for all
applications?

Let's Automate!

ExternalDNS

https://github.com/kubernetes-incubator/external-dns

https://github.com/kubernetes-incubator/external-dns

ExternalDNS

❖ Automates DNS entries for our application deployments
❖ Configures DNS records by looking at the resources (Services,

Ingresses, etc.)
❖ Keeps DNS entries in sync

➢ add DNS entries for a new exposed app
➢ clean up entries when the app is removed from the cluster.

apiVersion: extensions/v1beta1,
kind: Ingress,
 metadata: {

name: myapp-ingress,
 }
...
 rules: [
 {

host: myapp.stakater.com,
http: {

 paths: [
 {
...

myapp

myapp

Checkpoint

Create Service
Create Ingress
Create DNS record

Next step The connection to our service is not secure

We are accessing it over http and not https

We would like our service to be accessed
over a secure connection.

What do we do?

TLS!

TLS Certificates

What is TLS (Transport Layer Security)

❖ Previously called SSL
❖ security protocol for communications over the Internet
❖ HTTPS is TLS encryption on top of HTTP
❖ primary use case is securing communication between web

clients and servers
➢ TLS Certificate

■ facilitates the encrypted connection
■ Used for validating the website identity
■ Issued from a Certificate Authority

Cert Manager

https://github.com/jetstack/cert-manager

https://github.com/jetstack/cert-manager

Cert Manager

❖ automate the management and issuance of TLS certificates
❖ attempt to renew certificates at an appropriate time before

expiry
❖ Certificate issuers at namespace or cluster-wide level
❖ Free Certificate Issuers e.g. Let's Encrypt
❖ Certificate installed on Ingress

Cert Manager

However…

❖ Free Certificate issuers may have restrictions
➢ Let's Encrypt

■ 50 Certificates per Registered Domain per week
■ 5 Duplicate Certificates per week

➢ Redeploying Ingresses will require Certificate re-issue

AWS Certificate Manager
(ACM)

AWS Certificate Manager (ACM)

❖ Easily provision, manage, and deploy SSL/TLS certificates
➢ Quickly request certificate
➢ Quickly deploy it on AWS resources e.g. ELB

❖ AWS Certificate Manager handles certificate renewals
❖ Installed on the Load Balancer; reissuing won't be that often

Best
practice

Automate issuing or re-issuing
certificates
❖ Terraform
❖ AWS Service Operator

➢ Recently developed
➢ ACM not yet supported, but

planned
➢ Preferable to use once ACM is

integratedAWS
Certificate
Manager (ACM)

Checkpoint

Create Service
Create Ingress
Create DNS record
Create TLS Certificate

Next step Our service is now securely accessible

How do we ensure its uptime?

and get notified if it goes down?

Monitoring!

Uptime Monitoring

Uptime Monitoring

❖ Continually check reachability of app from global locations
❖ Uptime Checkers

➢ UptimeRobot
■ 50 free monitors

➢ Pingdom
➢ Statuscake
➢ Others...

Best
practice

❖ Verify from multiple locations across
the globe

❖ Frequent checks for production
services

❖ Infrequent checks for
non-production services

❖ Use instant alerts, e.g. Slack, etc.

Uptime
Monitoring

Let's
Reflect

Manually creating Uptime monitors for
each service…

…is much manual work

How do we do it efficiently for all
applications?

Let's Automate!

Stakater Ingress Monitor
Controller (IMC)

https://github.com/stakater/IngressMonitorController

https://github.com/stakater/IngressMonitorController

What is IMC

❖ automatically add / remove monitors against ingresses in the
uptime checker

❖ Uptime checker monitors the endpoint and alert when down
❖ Notification channels configured in Uptime checker

➢ Slack
➢ Email

apiVersion: extensions/v1beta1,
kind: Ingress,
metadata:
 name: myapp
 annotations:
 monitor.stakater.com/enabled: true
...

Slack alerts

Checkpoint

Create Service
Create Ingress
Create DNS record
Create TLS Certificate
Create Uptime Monitor

Keeping track of multiple services and
where to access them…

…can be difficult

How do we efficiently keep track of all
applications?

Let's
Reflect

Let's Automate!

Stakater Forecastle

https://github.com/stakater/Forecastle

https://github.com/stakater/Forecastle

What is Forecastle

❖ Dashboard web page for services
❖ Automatically register apps based on Ingress

apiVersion: extensions/v1beta1,
kind: Ingress,
metadata:
 name: myapp-ingress
 annotations:
 forecastle.stakater.com/expose: true
 forecastle.stakater.com/appName: "MyApp"
...

Checkpoint

Create Service
Create Ingress
Create DNS record
Create TLS Certificate
Create Uptime Monitor
Bookmark Service URL

Connecting the pieces

Recap

Manual approach

1. Create Service
2. Create Ingress
3. Create DNS record
4. Create TLS Certificate
5. Create Uptime Monitor
6. Bookmark Service URL

Efficient approach

Create Service
Ingress auto-generated
DNS record auto-generated
TLS Certificate auto-generated
Uptime Monitor auto-generated
Service auto-bookmarked

Thank you

