COMMUNITY DAY

TRADESHIFF

Efficiently exposing apps on Kubernetes at scale

Rasheed Amir, Stakater

Problem

Kubernetes runs container workloads in Pods

... but these are not automatically accessible outside the cluster

- What options does Kubernetes provide for this?
- How do we utilize these options efficiently?
 - across multiple apps (e.g. for micro-frontends)
 - across redeployments (e.g. for continuous deployment)

Agenda

We will explore...

The basics of how to expose an app on Kubernetes

How to use automation to scale the process for multiple apps

Some useful best practices for these tools and processes

About me

OPENSHIFT

About Stakater

Based in **Stockholm**

https://github.com/stakater

Kubernetes Expert! Team of professionals experienced with DevOps Automation and Full-stack web application development

We provide professional tools and services to help customers create and manage their Kubernetes based infrastructure effortlessly

Some of our clients:

What is a Kubernetes Service?

- An abstraction which provides access to a logical set of Pods
- Pods come and go, but Service has a stable IP address
- Provides load balancing (primitive) across member pods
- Which pods?
 - > Determined by label selector
- How to access?
 - Determined by service type

Service Type: ClusterIP

ClusterIP

- Default service type
- Service is accessible on a cluster internal IP
- Apps inside the cluster can access the service

ClusterIP

But...

No access from outside the cluster

Service Type: NodePort

NodePort

exposes the service on a static port on each node

NodePort

But...

- can only have one service per port
- a limited number of usable ports
- Needs special handling for cases of change in Node/VM IP

Service Type: LoadBalancer

LoadBalancer

- exposes the app using a cloud provider's network load balancer
- The load balancer gets a single IP

LoadBalancer

But...

- all traffic on the port will be forwarded to the service. no filtering or routing.
- each service exposed is handled by a separate Load Balancer.
 - > Skyrocketing cost in a large scale application.

Ingress

- More efficient way of exposing services
- Route traffic based on the request host or path
- Centralization of many services to a single point
- Use ClusterIP Service type

Ingress Controller

- Required by Ingress to work
- looks up Ingress resource definitions and routes traffic to services accordingly
- match with Ingress based on Class name

nginx ingress controller

- automatically creates a Load Balancer, e.g. ELB for AWS
- SSL termination
- Load balancing

Best practice

Ingress Controller

- 2 ingress controllers and 2 load balancers
 - > one for public applications
 - second for private applications
- private applications and load balancer should have restricted access
 - security groups, IP whitelisting, etc.

Checkpoint

Let's Reflect

Manually creating ingress resource for each application...

...is too much manual work

How do we do it efficiently for all applications?

Let's Automate!

Stakater Xposer

https://github.com/stakater/Xposer

Stakater Xposer

- Automatically creates/updates/deletes an ingress for a service with config from annotations
- Optionally uses CertManager to automatically generate TLS certificates

apiVersion: v1 kind: Service Metadata: name: myapp labels: expose: 'true' annotations: config.xposer.stakater.com/IngressNameTemplate: 'myapp-ingress' config.xposer.stakater.com/IngressURLTemplate: 'myapp.stakater.com' xposer.stakater.com/annotations: | kubernetes.io/ingress.class: external-ingress

apiVersion: extensions/v1beta1 kind: Ingress metadata: name: myapp-ingress annotations: kubernetes.io/ingress.class: external-ingress spec: rules: - host: myapp.stakater.com, http: paths: - path: / backend: serviceName: myapp servicePort: 80 . . .

Next step

The load balancer will have an auto-generated unfriendly domain name.

b8d03a52e6b8611e98c4d02a061b92d1-1200162703.us-west-2.elb.amazonaws.com

We would like to use our custom domain name.

What do we do?

DNS!

Domain Name Systems (DNS)

Kerschl München 100 km

Sydney 15 833 km

Buenos Aires 11.731 km

Honolulu 12.729 km

Rovaniemi 2,448 km

Nord Kap 2

Fuldabruci

Deel V

293

What is DNS

- The phonebook of the Internet
- translates domain names e.g. <u>aws.amazon.com</u> to IP addresses so browsers can load Internet resources
- DNS Servers hold these records

AWS Route53

What is Route53

- Amazon's Domain Name System (DNS) web service
- Main functions
 - > domain registration
 - > DNS routing
 - > health checking

Create Hosted Zone

Create Hosted Zo	ne Go to Re	cord Sets	Delete Hosted Z
Create Hosted Zone			
A hosted zone is a co	ontainer that holds info	rmation about ho	ow you want to route tra
Domain Name:	stakater.com		
Comment:			
Туре:	Public Hosted Zone		5
	A public hosted zone	determines how	traffic is routed on the
	Create		

Create Record Set

Crea	ate Re	Import Zone File	Delete Record			
Create Red	cord Se	rt				
Name:		myapp .stakater.com.				
Туре:	A -	IPv4 address				
Alias:	Yes	○ No				
Alias Ta	rget:	Enter target name				
You can a - CloudF	also tyr ront di	- ELB Application load balancers -				
 Elastic ELB loa S3 web 	Bears ad bala osite er	- ELB Classic load balancers b8d03a52e6b8611e98c4d02a061b92d1-120	n 001			
- Resour - VPC en - API Ga Learn Mo	ce rec idpoint teway pre	— ELB Network load balancers — No Targets Available — CloudFront distributions —	2.amazonaws.com			
Routing	Policy					
Route 53	respon	ds to queries based only on the values in this record	d. Learn More			
Evaluate	Targe	t Health: 🔿 Yes 🧔 No				
			Create			

Let's Reflect

Manually creating DNS records for each service...

...is too much manual work

How do we do it efficiently for all applications?

Let's Automate!

ExternalDNS

https://github.com/kubernetes-incubator/external-dns

ExternalDNS

- Automates DNS entries for our application deployments
- Configures DNS records by looking at the resources (Services, Ingresses, etc.)
- Keeps DNS entries in sync
 - > add DNS entries for a new exposed app
 - > clean up entries when the app is removed from the cluster.

<pre>apiVersion: extensions/vlbetal, kind: Ingress, metadata: {</pre>	
rules: [
{	
host: myapp.stakater.com,	
http: {	
paths: [
1	
L L	
•••	

Checkpoint

Next step

takater

The connection to our service is not secure

We are accessing it over http and not https

We would like our service to be accessed over a secure connection.

What do we do?

TLS!

Realized States TLS Certificates Aninduling dan 15: Marcy 1818 lalt-Stand and Stand and a

Cording &

Hinrich

allan

and find an Stand

A Station Gradien

CHERRY HAR MANY

Lan and for

Quela in a

A. And

firme and

ing is and 10 Wacht

Will M. Mins

No= 34 A

with Shington and and

fin in Juiningen and

Friedeburg . 7 8

Infanta allestfrighter, malifu mint

1. Ouringinalian alla mall man blief glaif

and mind find, annadure dur faticine Lansfen Heigen, Zimmungin zie Eiben

secufere, finnist fyngaptantings.

un fansfer Height .

12 sforfur

What is TLS (Transport Layer Security)

- Previously called SSL
- security protocol for communications over the Internet
- HTTPS is TLS encryption on top of HTTP
- primary use case is securing communication between web clients and servers
 - > TLS Certificate
 - facilitates the encrypted connection
 - Used for validating the website identity
 - Issued from a Certificate Authority

Cert Manager

https://github.com/jetstack/cert-manager

Cert Manager

- automate the management and issuance of TLS certificates
- attempt to renew certificates at an appropriate time before expiry
- Certificate issuers at namespace or cluster-wide level
- Free Certificate Issuers e.g. Let's Encrypt
- Certificate installed on Ingress

Cert Manager

However...

- Free Certificate issuers may have restrictions
 - > Let's Encrypt
 - 50 Certificates per Registered Domain per week
 - 5 Duplicate Certificates per week
 - Redeploying Ingresses will require Certificate re-issue

AWS Certificate Manager (ACM)

AWS Certificate Manager (ACM)

- Easily provision, manage, and deploy SSL/TLS certificates
 - > Quickly request certificate
 - > Quickly deploy it on AWS resources e.g. ELB
- AWS Certificate Manager handles certificate renewals
- Installed on the Load Balancer; reissuing won't be that often

Certificates

AWS Certificate Manager logs domain names from your certificates into public certificate transparency (CT) logs when rem can opt out of CT logging. Learn more

Request a certificate

🏦 Import a certificate

Actions •

						« <	Viewing 1 to
0		Name 👻	Domain name 👻	Additional names	Status -	Туре 👻	In use? 👻
	•		stakater.com	*.stakater.com, *.dev.stakater.com, *.tools.stakater.com	Issued	Amazon Issued	Yes

Best practice

AWS Certificate Manager (ACM) Automate issuing or re-issuing certificates

- Terraform
- ✤ AWS Service Operator
 - > Recently developed
 - ACM not yet supported, but planned
 - Preferable to use once ACM is integrated

Checkpoint

- 🙍 Create Service
 - 🙍 Create Ingress
- Create DNS record
- 🙍 Create TLS Certificate

Next step

Our service is now securely accessible

How do we ensure its uptime?

and get notified if it goes down?

Monitoring!

Uptime Monitoring

				in in the				na d	ALC: N			112
PATIENT NAME	1											-
TME	THAT	SUM	3946	2936	7.66	1544	394	194	244	11.000	39%	17
6P			1						1			
HR.											~	
PR										1		
C2 SAT											13	
TEMP											6	1
GLUCOSE	10	0	0	0	0	0	0		0	0	12	4
PAR	_								-	-		4
PAIN IN MEDIS CHECKE	0.9 0.9	0+ 04 08	0.4 0.4	0.4	0.4	0.4 114 0.5	178 118 118	54 124 128	См 0.4	04 09 08	0.0	L N
масонона	U.	a a	0.0	0.0	0.0	0.0	11	0	0.0	0.0	0.0	00

=	~		
0	8	- 1	

Uptime Monitoring

- Continually check reachability of app from global locations
- Uptime Checkers
 - > UptimeRobot
 - 50 free monitors
 - > Pingdom
 - > Statuscake
 - ≻ Others...

Best practice

Uptime Monitoring

- Verify from multiple locations across the globe
- Frequent checks for production services
- Infrequent checks for non-production services
- Use instant alerts, e.g. Slack, etc.

Let's Reflect

Manually creating Uptime monitors for each service...

...is much manual work

How do we do it efficiently for all applications?

Let's Automate!

Stakater Ingress Monitor Controller (IMC)

https://github.com/stakater/IngressMonitorController

What is IMC

- automatically add / remove monitors against ingresses in the uptime checker
- Uptime checker monitors the endpoint and alert when down
- Notification channels configured in Uptime checker
 - > Slack
 - ≻ Email

. . .

apiVersion: extensions/vlbetal, kind: Ingress, metadata: name: myapp annotations:

monitor.stakater.com/enabled: true

								1	
	n	tin	n	0	R		h	n t	l
-	P		••	C		Y			l
						1	-		

+ Add New Mo	onitor													
(Bulk Actions)				(Ex	port I	Meni	ors	- <u>Ex</u>	and	I Mor	nitor	Nar	nes)	
Sort Monitors *	O Last 24 Hours	7	9	11	13	15	17	19	21	23	1	3	5	
99.85% http myapp	10	-												0

☆ Response Time last 24 hours (475.42ms av.)

Shows the "instant" that the monitor started returning a response in ms (and average for the displayed period is 475.42ms).

Latest downtime

It was recorded on 2019-02-14 05:39:07 and the downtime lasted for 0 hrs, 7 mins.

Slack alerts

≙ pro ☆ 2	od-notifications	6 i 6	Q Search
	Thursday, February	14th	
Uptime Robot	Optime Robot APP 10:39 AM Monitor is DOWN: myapp (https://myapp.stakate Gateway	er.com/health)	- Reason: HTTP 502 - Bad
Uptime Robòt	Uptime Robot APP 10:47 AM Monitor is UP: myapp (https://myapp.stakater.com 53 seconds.	m/health). It w	vas down for 7 minutes and

Checkpoint

Let's Reflect

Keeping track of multiple services and where to access them...

...can be difficult

How do we efficiently keep track of all applications?

Let's Automate!

Stakater Forecastle

https://github.com/stakater/Forecastle

What is Forecastle

- Dashboard web page for services
- Automatically register apps based on Ingress

	1
apiVersion: extensions/vlbetal,	5
kind: Ingress,	
metadata:	
name: myapp-ingress	
annotations:	
forecastle.stakater.com/expose: true	
forecastle.stakater.com/appName: "MyApp	, "

Forecastle			Search	٩
Global				
МуАрр	Keycloak	Dashboard		
Logging				
Elasticsearch	Cerebro	Kibana		

Checkpoint

Connecting the pieces

Recap

Manual approach

- 1. Create Service
- 2. Create Ingress
- 3. Create DNS record
- 4. Create TLS Certificate
- 5. Create Uptime Monitor
- 6. Bookmark Service URL

Efficient approach

- Create Service
 - → Ingress auto-generated
 - → DNS record auto-generated
 - → TLS Certificate auto-generated
 - → Uptime Monitor auto-generated
 - → Service auto-bookmarked

Thank you

kater

0 0